By Topic

Low-Cost Phased-Array Antenna Using Compact Tunable Phase Shifters Based on Ferroelectric Ceramics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Mohsen Sazegar ; Microwave Eng. Group, Tech. Univ. of Darmstadt, Darmstadt, Germany ; Yuliang Zheng ; Holger Maune ; Christian Damm
more authors

A low-cost phased-array antenna at 10 GHz is presented for a scan angle of ±50°. The array employs continuously tunable phase shifters based on a screen printed barium-strontium-titanate thick-film ceramic. Due to the use of artificial transmission line topology, the proposed phase-shifter design has a very compact size (3 mm × 2.8 mm) for 342° total phase shift. In the frequency range from 8 to 10 GHz, it exhibits a figure of merit >;52°/dB, which is among the best of phase shifters based on ferroelectric thick films. In a prototyped phased array, the RF circuit consists of a feeding network, phase shifters, and antenna elements, which are integrated into one planar metallization layer. Furthermore, a simple way for routing bias lines for phase shifters is demonstrated using high resistive electrodes. Using screen printed thick films and applying a simplified fabrication process for the RF and bias circuitry can reduce the total expense of phased arrays considerably.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:59 ,  Issue: 5 )