Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Voxel-Based Adaptive Spatio-Temporal Modelling of Perfusion Cardiovascular MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schmid, V.J. ; Dept. of Stat., Ludwig Maximilians-Univ. Munich, Munich, Germany

Contrast enhanced myocardial perfusion magnetic resonance imaging (MRI) is a promising technique, providing insight into how reduced coronary flow affects the myocardial tissue. Stenosis in a coronary vessel leads to reduced myocardial blood flow, but collaterals may secure the blood supply of the myocardium, with altered tracer kinetics. Due to a low signal-to-noise ratio, quantitative analysis of the signal is typically difficult to achieve at the voxel level. Hence, analysis is often performed on measurements that are aggregated in predefined myocardial segments, that ignore the variability in blood flow in each segment. The approach presented in this paper uses local spatial information that enables one to perform a robust analysis at the voxel level. The spatial dependencies between local response curves are modelled via a hierarchical Bayesian model. In the proposed framework, all local systems are analyzed simultaneously along with their dependencies, producing a more robust context-driven estimation of local kinetics. Detailed validation on both simulated and patient data is provided.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:30 ,  Issue: 7 )