By Topic

An Efficient Computational Architecture for a Collision Early-Warning System for Vehicles, Pedestrians, and Bicyclists

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Greene, D. ; Palo Alto Res. Center, Palo Alto, CA, USA ; Juan Liu ; Reich, J. ; Hirokawa, Y.
more authors

We describe a computational architecture of a collision early-warning system for vehicles and other principals. Early-warnings allow drivers to make good judgments and to avoid emergency stopping or dangerous maneuvering. With many principals (vehicles, pedestrians, bicyclists, etc.) coexisting in a dense intersection, it is difficult to predict, even a few seconds in advance, since there are many possible scenarios. It is a major challenge to manage computational resources and human attention resources so that only the more plausible collisions are tracked, and of those, only the most critical collisions prompt warnings to drivers. In this paper, we propose a two-stage collision risk assessment process, including the following: 1) a preliminary assessment via simple efficient geometric computations, which thoroughly considers surrounding principals and identifies likely potential accidents, and 2) a specialized assessment that computes more accurate collision probabilities via sophisticated statistical inference. The whole process delivers an expected utility assessment to available user interfaces (UIs), allowing the UIs to make discriminating choices of when to warn drivers or other principals.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:12 ,  Issue: 4 )