Cart (Loading....) | Create Account
Close category search window
 

Bulk Planar Junctionless Transistor (BPJLT): An Attractive Device Alternative for Scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gundapaneni, S. ; Dept. of Electr. Eng., Indian Inst. of Technol. Bombay, Mumbai, India ; Ganguly, S. ; Kottantharayil, A.

We propose a novel highly scalable source-drain-junction-free field-effect transistor that we call the bulk planar junctionless transistor (BPJLT). This builds upon the idea of an isolated ultrathin highly doped device layer of which volume is fully depleted in the off-state and is around flatband in the on-state. Here, the leakage current depends on the effective device layer thickness, and we show that with well doping and/or well bias, this can be controllably made less than the physical device layer thickness in a bulk planar junction-isolated structure. We demonstrate by extensive device simulations that these additional knobs for controlling short-channel effects reduce the off-state leakage current by orders of magnitude for similar on-state currents, making the BPJLT highly scalable.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.