By Topic

Neuro-fuzzy system for medical image processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Implementation of a neuro-fuzzy segmentation process of the MRI data is presented in this study to detect various tissues like white matter, gray matter, csf and tumor. The advantage of hierarchical self organizing map and fuzzy c means algorithms are used to classify the image layer by layer. The lowest level weight vector is achieved by the abstraction level. We have also achieved a higher value of tumor pixels by this neuro-fuzzy approach. The computation speed of the proposed method is also studied. The multilayer segmentation results of the neuro fuzzy are shown to have interesting consequences from the viewpoint of clinical diagnosis. Neuro fuzzy technique shows that MRI brain tumor segmentation using HSOM-FCM also perform more accurate one than the techniques proposed before.

Published in:

Emerging Trends in Robotics and Communication Technologies (INTERACT), 2010 International Conference on

Date of Conference:

3-5 Dec. 2010