By Topic

Hybrid Markov Random Field with Parallel Ant Colony Optimization and Fuzzy C Means for MRI Brain Image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karnan, M. ; Dept. of Comput. Sci. & Eng., Tamilnadu Coll. of Eng., Coimbatore, India ; Gopal, N.N.

In this paper, a novel approach to MRI Brain Image segmentation based on the Hybrid Parallel Ant Colony Optimization (HPACO) with Fuzzy C-Means (FCM) Algorithm have been used to find out the optimum label that minimizes the Maximizing a Posterior (MAP) estimate to segment the image. There are M colonies, M-1 colonies treated as slaves and one colony for master. Each colonies visit all the pixels with out revisit. Initially, initialize the pheromone value for all the colonies. Posterior energy values or fitness values are computed by Markov Random Field. If this value is less than global minimum, the local minimum is assigned to global minimum. The pheromone of the Ant that generates the global minimum is updated. At the final iteration global minimum returns the optimum threshold value for select the initial clustering the FCM implementation in the brain Magnetic Resonance Image (MRI) segmentation.

Published in:

Computational Intelligence and Computing Research (ICCIC), 2010 IEEE International Conference on

Date of Conference:

28-29 Dec. 2010