By Topic

Separable Approximation for Solving the Sensor Subset Selection Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghassemi, F. ; Sloan Sch. of Manage., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Krishnamurthy, V.

An algorithm is proposed to solve the sensor subset selection problem. In this problem, a prespecified number of sensors are selected to estimate the value of a parameter such that a metric of estimation accuracy is maximized. The metric is defined as the determinant of the Bayesian Fisher information matrix (B-FIM). It is shown that the metric can be expanded as a homogenous polynomial of decision variables. In the algorithm, a separable approximation of the polynomial is derived based on a graph-theoretic clustering method. To this end, a graph is constructed where the vertices represent the sensors, and the weights on the edges represent the coefficients of the terms in the polynomial. A process known as natural selection in population genetics is utilized to find the dominant sets of the graph. Each dominant set is considered as one cluster. When the separable approximation is obtained, the sensor selection problem is solved by dynamic programming. Numerical results are provided in the context of localization via direction-of-arrival (DOA) measurements to evaluate the performance of the algorithm.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:47 ,  Issue: 1 )