By Topic

Geometry-Induced Range-Dependence Compensation for Bistatic STAP with Conformal Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ries, P. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Liege, Liege, Belgium ; Lapierre, F.D. ; Verly, J.G.

Radar space-time adaptive processing (STAP) is a well-suited technique to detect slow-moving targets in the presence of a strong interference background. We consider STAP for a radar operating in a bistatic radar configuration and collecting returns with a conformal antenna array (CAA). The statistics of the secondary data snapshots used to estimate the optimum weight vector are not identically distributed with respect to range, thus preventing the STAP processor from achieving its optimum performance. The compensation of the range-dependence (RD) requires the knowledge of the locus of the clutter signature. We use a new RANSAC-based method for estimating this locus or, equivalently, the flight configuration parameters. Based on this knowledge, we perform an RD compensation of the snapshots to obtain an accurate estimate of the clutter covariance matrix. End-to-end performance analysis in terms of signal-to-inference-plus-noise ratio loss shows that our method yields promising performance.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:47 ,  Issue: 1 )