By Topic

Evolution of Strategies With Different Representation Schemes in a Spatial Iterated Prisoner's Dilemma Game

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ishibuchi, H. ; Grad. Sch. of Eng., Osaka Prefecture Univ., Sakai, Japan ; Ohyanagi, H. ; Nojima, Yusuke

The iterated prisoner's dilemma (IPD) game has been frequently used to examine the evolution of cooperative behavior among agents in the field of evolutionary computation. It has been demonstrated that various factors are related to the evolution of cooperative behavior. One well-known factor is spatial relations among agents. The IPD game is often played in a 2-D grid world. Such a spatial IPD game has a neighborhood structure, which is used to choose opponents for the IPD game and parents for genetic operations. Another important factor is the choice of a representation scheme to encode the strategy of each agent. Different representation schemes often lead to different results. Whereas the choice of a representation scheme is known to be important, a mixture of different representation schemes has not been examined for the spatial IPD game in the literature. That is, a population of homogeneous agents with the same representation scheme has been usually assumed in the literature. In this paper, we introduce the use of different representation schemes in a single population to the spatial IPD game in order to examine the evolution of cooperative behavior under more general assumptions. With the use of different representation schemes, we can examine the evolution of cooperative behavior in various settings such as partial interaction through the IPD game, partial interaction through crossover, full interaction through the IPD game and crossover, and no interaction between different subpopulations of agents.

Published in:

Computational Intelligence and AI in Games, IEEE Transactions on  (Volume:3 ,  Issue: 1 )