By Topic

Improved technique for automated classification of protein Subcellular Location patterns in fluorescence microscope images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fateme Mostajer Kheirkhah ; Electronic engineering, Islamic Azad University, Tabriz Branch, Iran ; Siamak Haghipour

The genomic revolution promises a complete understanding of the mechanisms by which cells and tissues carry out their functions. As proteins are integral components of cell function, it is critical to understand their properties such as structure and localization. Knowledge of a protein's subcellular distribution can contribute to a complete understanding of its function. Processing of subcellular image sets is still mostly manual and it causes the process inefficient and error-prone. But in recent years, try to perform high-resolution; high-throughput analysis for ten thousands of expressed proteins in the many cell types and cellular conditions under which they may be found creates. In this review, we describe a systematic approach for interpreting protein subcellular distributions using modified threshold adjacency statistics (MTAS) set of Subcellular Location Features (SLF). Previous work that uses threshold adjacency statistics (TAS), introduces a set of Subcellular Location Features which are computed by counting the number of threshold pixels adjacent. But here a novel method has been used that determines a modified features set, to improve the recognition of protein subcellular location patterns in 2D fluorescence microscope images with high accuracy and high speed.

Published in:

Biomedical Engineering (ICBME), 2010 17th Iranian Conference of

Date of Conference:

3-4 Nov. 2010