Cart (Loading....) | Create Account
Close category search window
 

Detection of cancerous zones in mammograms using fractal modeling and classification by probabilistic neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Recent studies on the geometry of fractals indicate that tumors with irregular shapes can be utilized for the study of the morphology and diagnosis of cancerous cases. In this paper, we deal with the fractal modeling of the mammographic images and their background morphology. It is shown that the use of fractal modeling as applied to a given image can clearly discern cancerous zones from noncancerous areas. Our results show that fractal modeling of images can be used as an effective tool for identification of cancerous cells. For fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section. We have used two dimensional box counting algorithm after which based on the order of the computations, they are placed in an appropriate matrix to facilitate the required computations. Finally using eight features identified as characteristic features of tumors extracted from mammogram images, the results obtained from the preliminary analysis stages, were utilized in a neural network for classification of cells into malignant and benign with the accuracy of 89.21% classification results.

Published in:

Biomedical Engineering (ICBME), 2010 17th Iranian Conference of

Date of Conference:

3-4 Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.