By Topic

New method for generating site-specific clutter map for land-based radar by using multimodal remote-sensing images and digital terrain data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. Kurekin ; Plymouth Marine Lab., Plymouth, UK ; D. Radford ; K. Lever ; D. Marshall
more authors

By using multimodal remote-sensing images and digital terrain data of the environment, this study presents a new method for generating the clutter map specific to the selected land radar site and the radar's operating parameters. In the proposed method, the estimation of backscattering from the environment involves extrapolation of the airborne radar remote-sensing image to provide the baseline values, classification of multispectral remote-sensing satellite images to provide a detailed description of terrain types, use of digital terrain elevation data with the land radar position and height to provide local grazing angles and a terrain visibility map and use of the digital topographic map to provide the geometric reference for all data sets. Using actual remote-sensing images and digital terrain data acquired from a real environment with various terrain features, the clutter map generated by the proposed method for land-based radar is compared with that generated by the competitive modelling method. The accuracy of the proposed method is demonstrated based on the differences with respect to the actual clutter measurements using a different airborne radar-sensing configuration.

Published in:

IET Radar, Sonar & Navigation  (Volume:5 ,  Issue: 3 )