By Topic

Taylor series expansions for airborne radar space-time adaptive processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Beau, S. ; SUPELEC, Lab. des Signaux et Syst. (LSS), Univ. Paris Sud, Gif-sur-Yvette, France ; Marcos, S.

Space-time adaptive processing (STAP) for range-dependent clutter rejection in airborne radar is considered. Indeed, radar antenna architectures or configurations that are different from the conventional uniform linear antenna array (ULA) and side-looking (SL) configuration have consequences on the clutter properties. The authors here investigate the use of Taylor series expansions (TSEs) of the space-time covariance matrix in the classical sample matrix inversion (SMI) STAP method in order to mitigate the range non-stationarity of the clutter and they compare it to the derivative-based updating (DBU) already proposed in the literature. The authors also propose a new algorithm based on a TSE of the clutter plus noise subspace in conjunction with the eigencanceler-based (EC) STAP, which improves the performance in term of signal-to-interference plus noise ratio (SINR) loss, compared to the DBU method. In this study, the particular cases of a ULA and a uniform circularly curved antenna (UCCA) array in SL and non-SL monostatic configurations as well as a ULA in some bistatic configurations are considered for the test and the comparison of the presented algorithms.

Published in:

Radar, Sonar & Navigation, IET  (Volume:5 ,  Issue: 3 )