By Topic

Low resolution method using adaptive LMS scheme for moving objects detection and tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chih-Hsien Hsia ; Department of Electrical Engineering, Tamkang University, Taiwan ; Yi-Ping Yeh ; Tsung-Cheng Wu ; Jen-Shiun Chiang
more authors

This paper presents a new model for adaptive filter with the least-mean-square (LMS) scheme to train the mask operation on low resolution images. The adaptive filter theory with adaptive least-mean-square scheme (ALMSS) uses the training mask for moving object detection and tracking. However, the successful moving objects detection in a real surrounding environment is a difficult task due to noise issues such as fake motion or Gaussian noise. Many approaches have been developed in constrained environments to detect and track moving objects. On the other hand, the ALMSS approach can effectively reduce the noise with low computing cost in both fake motion and Gaussian noise environments. The experiments on real scenes indicate that the proposed ALMSS method is effective for moving object detection and tracking in real-time.

Published in:

Intelligent Signal Processing and Communication Systems (ISPACS), 2010 International Symposium on

Date of Conference:

6-8 Dec. 2010