By Topic

Reconfigurable CMOS Oscillator Based on Multifrequency AlN Contour-Mode MEMS Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rinaldi, M. ; Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA ; Chengjie Zuo ; Van der Spiegel, J. ; Piazza, G.

This paper reports on the first demonstration of a reconfigurable complementary-metal-oxide-semiconductor (CMOS) oscillator based on microelectromechanical system (MEMS) resonators operating at four different frequencies (268, 483, 690, and 785 MHz). A bank of multifrequency switchable AlN contour-mode MEMS resonators was connected to a single CMOS oscillator circuit that can be configured to selectively operate in four different states with distinct oscillation frequencies. The phase noise (PN) of the reconfigurable oscillator was measured for each of the four different frequencies of operation, showing values between -94 and - 70 dBc/Hz at a 1-kHz offset and PN floor values as low as -165 dBc/Hz at a 1-MHz offset. Jitter values as low as a 114-fs root mean square (integrated 12 kHz-20 MHz) and switching times as fast as 20 μs were measured. This first prototype represents a miniaturized solution (30 times smaller) over commercially available voltage-controlled surface-acoustic-wave oscillators and potentially has the advantage of generating multiple stable frequencies without the need of cumbersome and power-consuming phase-locked-loop circuits.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 5 )