By Topic

Thermometry in noble gas dielectric barrier discharges at atmospheric pressure using optical emission spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Aziz Berchtikou ; Department of Engineering Physics, Ecole Polytechnique, C.P. 6079, Succ. Centre Ville, Montreal, QC H3C3A7, Canada ; Joel Lavoie ; Viorel Poenariu ; Bachir Saoudi
more authors

We measure the temperature, T, of dielectric barrier discharges (DBD), in noble gases using optical emission spectroscopy (OES), by analysing rotational bands in the emission spectra of the first negative system (FNS) of N2+. This has the advantage that rotational structure can be fully resolved even with a spectrograph of average performance, and that the rotational temperature, Trot (~ Tgas) can then be determined from a conventional Boltzmann plot. Ionization of N2 occurs mainly via Penning transfer from metastable excited states of He (ca. 20 eV) or Ne (ca. 16.6 eV). Using two glass-walled DBD chambers of very different volumes (0.1 and 20 liters), we have studied atmospheric-pressure discharges in flowing helium (He) or neon (Ne) containing traces of nitrogen. Discharges were excited by audio-frequency (10 kHz) high voltage (HV) using a needle as the HV electrode and a dielectric (alumina)-covered planar grounded counter-electrode. OE spectra were acquired with a 0.5 m focal length spectrograph, coupled to an intensified charge coupled device (ICCD) detector. Using the (0-0) R-branch of the FNS N2+ (B2Σu+ - X2Σg+) bands near a wavelength of 391.4 nm, we have measured axial (inter-electrode) distributions of Trot for the two different reactor volumes in both He and Ne. Trot values were found to be highest at the needle electrode, of about 450 K and 740 K for He and Ne, respectively; in He, Trot dropped to a minimum of about 405 K at the mid-gap position in the small chamber, and ~ 360 K near the planar electrode in the large chamber. We conclude that temperatures in noble gas discharges depend critically on thermal conductivities of the particular gases (KHe = 1.9; KNe = 0.6, both in mW.cm-1.K-1) and on other experimental factors that influe- - nce heat transfer.

Published in:

IEEE Transactions on Dielectrics and Electrical Insulation  (Volume:18 ,  Issue: 1 )