Cart (Loading....) | Create Account
Close category search window
 

Automatic Recognition of Non-Acted Affective Postures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kleinsmith, A. ; Dept. of Comput., Goldsmiths, Univ. of London, London, UK ; Bianchi-Berthouze, N. ; Steed, A.

The conveyance and recognition of affect and emotion partially determine how people interact with others and how they carry out and perform in their day-to-day activities. Hence, it is becoming necessary to endow technology with the ability to recognize users' affective states to increase the technologies' effectiveness. This paper makes three contributions to this research area. First, we demonstrate recognition models that automatically recognize affective states and affective dimensions from non-acted body postures instead of acted postures. The scenario selected for the training and testing of the automatic recognition models is a body-movement-based video game. Second, when attributing affective labels and dimension levels to the postures represented as faceless avatars, the level of agreement for observers was above chance level. Finally, with the use of the labels and affective dimension levels assigned by the observers as ground truth and the observers' level of agreement as base rate, automatic recognition models grounded on low-level posture descriptions were built and tested for their ability to generalize to new observers and postures using random repeated subsampling validation. The automatic recognition models achieve recognition percentages comparable to the human base rates as hypothesized.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 4 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.