By Topic

Parallel Elite Genetic Algorithm and Its Application to Global Path Planning for Autonomous Robot Navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ching-Chih Tsai ; Department of Electrical Engineering, National Chung-Hsing University, Taichung , Taiwan ; Hsu-Chih Huang ; Cheng-Kai Chan

This paper presents a parallel elite genetic algorithm (PEGA) and its application to global path planning for autonomous mobile robots navigating in structured environments. This PEGA, consisting of two parallel EGAs along with a migration operator, takes advantages of maintaining better population diversity, inhibiting premature convergence, and keeping parallelism in comparison with conventional GAs. This initial feasible path generated from the PEGA planner is then smoothed using the cubic B-spline technique, in order to construct a near-optimal collision-free continuous path. Both global path planner and smoother are implemented in one field-programmable gate array chip utilizing the system-on-a-programmable-chip technology and the pipelined hardware implementation scheme, thus significantly expediting computation speed. Simulations and experimental results are conducted to show the merit of the proposed PEGA path planner and smoother for global path planning of autonomous mobile robots.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:58 ,  Issue: 10 )