By Topic

Design of a Corner-Reflector Reactively Controlled Antenna for Maximum Directivity and Multiple Beam Forming at 2.4 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dimousios, T.D. ; Nat. Tech. Univ. of Athens, Athens, Greece ; Mitilineos, S.A. ; Panagiotou, S.C. ; Capsalis, C.N.

Electronically steerable passive array radiator (ESPAR) antennas constitute a promising research field and are expected to play important role in future wireless communications. In this paper, a new approach in ESPAR antenna design for base station applications is proposed. A corner-plate reflector is combined with active and passive (reactively loaded) elements in order to implement a corner-reflector ESPAR (CR-ESPAR) configuration. It is shown that when combined with corner reflectors in order to sectorize the coverage area, an ESPAR antenna offers multiple radiation patterns with higher directivity and resolution. A case study of a CR-ESPAR suitable for 2.4 GHz ISM applications is demonstrated, where the performance of the structure is optimized with respect to resonance frequency, input impedance, and multiple switched-beam patterns configuration. The optimization of the array is performed using a Genetic Algorithm (GA) tool as a method of choice, achieving a maximum gain equal to 14 dBi for a 30°3 dB-beamwidth and a gain of 11 dBi for a 45°3 dB-beamwidth, while the VSWR is kept below 1.7 in all cases. Due to its limited physical size, the proposed CR-ESPAR can be used as a portable antenna for deployment in WiFi, WLAN and other applications.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 4 )