Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Hot keyword identification for extracting web public opinion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhiqi Fang ; Nat. Comput. Syst. Eng. Res. Inst. of China, Beijing, China ; Yue Ning ; Tingshao Zhu

Internet is becoming an increasingly important platform for ordinary life and work. It is expected that keyword extraction can help people quickly find hot spots on the web, since keywords in a document provide important information about the content of the document. In this paper, we propose to use text clustering method based on semi-supervised learning to get focuses of social topics in a large amount of text. We develop a novel keyword extraction method named NATF-PDF, which is based on TFPDF algorithm, combined with supervised learning theory for keyword extraction. We compare its performance with TFIDF in comparison, and the results show that our method get better accuracy and recall ratio.

Published in:

Pervasive Computing and Applications (ICPCA), 2010 5th International Conference on

Date of Conference:

1-3 Dec. 2010