By Topic

A time-series approach for shock outcome prediction using machine learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shandilya, S. ; Dept. of Comput. Sci., Virginia Commonwealth Univ., Richmond, VA, USA ; Ward, K.R. ; van Najarian, K.

Chances of successful defibrillation, and that of subsequent return of spontaneous circulation (ROSC), worsen rapidly with passage of time during cardiac arrest. The Electrocardiogram (ECG) signal of ventricular fibrillation (VF) has been analyzed for certain characteristics which may be predictive of successful defibrillation. Time-series features were extracted. A total of 59 counter shocks (CS) were analyzed. They were best classified as successful or unsuccessful by employing the Random Tree method. An average accuracy of 71% was achieved for 6 randomized runs of 6-fold cross validation. Classification could be performed on ECG tracings of 40 seconds. Real-time, short-term analysis of ECG, through signal-processing and machine-learning techniques, may be valuable in determining CS success.

Published in:

Bioinformatics and Biomedicine Workshops (BIBMW), 2010 IEEE International Conference on

Date of Conference:

18-18 Dec. 2010