By Topic

A comprehensive reliability investigation of the voltage-, temperature- and device geometry-dependence of the gate degradation on state-of-the-art GaN-on-Si HEMTs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)

In this work, the gate degradation of GaN-based HEMTs is analyzed. We find that the gate degradation does not occur only beyond a critical voltage, but it has a strong voltage accelerated kinetics and a weak temperature dependence. By means of a statistical study we show that the time-to-failure can be fitted best with a Weibull distribution. By using the distribution parameters and a power law model it is possible to perform lifetime extrapolation based on the gate degradation at a defined failure level and temperature for the first time. From this elaboration, the lifetime of a given device geometry can also be extracted. Eventually, the strong bias dependence of the gate degradation reported here implies that this phenomenon should be assessed by means of a voltage-based accelerated investigation as described in this work.

Published in:

Electron Devices Meeting (IEDM), 2010 IEEE International

Date of Conference:

6-8 Dec. 2010