By Topic

Performance benchmarks for Si, III–V, TFET, and carbon nanotube FET - re-thinking the technology assessment methodology for complementary logic applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lan Wei ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Oh, S. ; Wong, H.-S.P.

Aspiring emerging device technologies (e.g. III-V, CNFET, TFET) are often targeted to outperform Si FETs at the same off-state current (Ioff) and supply voltage (Vdd). We present a new device technology assessment methodology based on energy-delay optimization which treats Ioff and Vdd as “free variables”, and bounded by constraints due to device variation and circuit noise margin. We show that for each emerging device (III-V, CNFET, TFET), there is a corresponding and different optimal set of Ioff and Vdd, and an optimal energy-delay. Today's best-available III-V and CNFET can outperform the best Si FET by 1.5-2x and 2-3.5x, respectively. Projected into the 10nm gate length regime, III-V on-Insulator, CNFET, and TFET are 1.25x, 2-3x, and 5-10x (for FO1 delays of 0.3ns, 0.1ns, and 1ns respectively) better than the ITRS target at the same gate length.

Published in:

Electron Devices Meeting (IEDM), 2010 IEEE International

Date of Conference:

6-8 Dec. 2010