By Topic

Improved algorithms and data structures for solving graph problems in external memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kumar, V. ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA ; Schwabe, E.J.

Recently, the study of I/O-efficient algorithms has moved beyond fundamental problems of sorting and permuting and into wider areas such as computational geometry and graph algorithms. With this expansion has come a need for new algorithmic techniques and data structures. In this paper, we present I/O-efficient analogues of well-known data structures that we show to be useful for obtaining simpler and improved algorithms for several graph problems. Our results include improved algorithms for minimum spanning trees, breadth-first search, and single-source shortest paths. The descriptions of these algorithms are greatly simplified by their use of well-defined I/O-efficient data structures with good amortized performance bounds. We expect that I/O efficient data structures such as these will be a useful tool for the design-of I/O-efficient algorithms

Published in:

Parallel and Distributed Processing, 1996., Eighth IEEE Symposium on

Date of Conference:

23-26 Oct 1996