By Topic

Wafer thinning, bonding, and interconnects induced local strain/stress in 3D-LSIs with fine-pitch high-density microbumps and through-Si vias

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Murugesan, M. ; New Ind. Creation Hatchery Center, Tohoku Univ., Sendai, Japan ; Kino, H. ; Nohira, H. ; Bea, J.C.
more authors

Mechanical strain/stress and crystal defects are produced in extremely thin wafers (thickness ~10 μm) of 3D-LSIs not only during wafer thinning, but also after wafer bonding using fine-pitch, high-density microbumps and curing. Furthermore, the metal of through-Si via (TSV) and microbump not only becomes the cause of contamination, but also induces strain/stress (due to the difference in the co-efficient of thermal expansion (CTE) between Si and metal) in thinned Si substrate. X-ray photoelectron spectroscopy (XPS) results showed that the crystal quality of Si is highly deteriorated in the ultra-poly ground (UPG) surface after wafer thinning and stress relief. Micro-Raman spectroscopy (μRS) data revealed that a local tensile strain amount to 1.8 GPa was induced by 4×4 μm2 square sized Si microbumps in 10 μm-thick LSI wafers after bonding and curing. We have noticed that this locally induced strain/stress caused more than 10% change in the ON current of p-MOS transistor. CuSn microbumps have also induced strain/stress at Si wafer surface, and it penetrates deeper for larger bump size and wider for smaller bump pitch.

Published in:

Electron Devices Meeting (IEDM), 2010 IEEE International

Date of Conference:

6-8 Dec. 2010