By Topic

Efficient broadcast and multicast on multistage interconnection networks using multiport encoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajeev Sivaram ; Dept. of Comput. & Inf. Sci., Ohio State Univ., Columbus, OH, USA ; Panda, D.K. ; Stunkel, C.B.

This paper proposes a new approach for implementing fast multicast and broadcast in multistage interconnection networks (MINs) with multiport encoded multidestination worms. For a MIN with k×k switches and n stages such worms use n header flits each. One flit is used for each stage of the network and it indicates the output ports to which a multicast message must be replicated. A single multiport encoded worm has the capability to cover a large number of destinations with a single communication startup. A switch architecture is proposed for implementing multidestination worms without deadlock. Grouping algorithms of varying complexity are presented to derive the associated multiport encoded worms for a multicast to an arbitrary set of destinations. Using these worms a multinomial tree-based scheme is proposed to implement the multicast. This approach significantly reduces broadcast/multicast latency compared to schemes using unicast messages. Simulation studies indicate that improvement in broadcast/multicast latency up to a factor of 4 is feasible using the new approach. Interestingly, this approach is able to implement multicast with reduced latency as the number of destinations increases beyond a certain number

Published in:

Parallel and Distributed Processing, 1996., Eighth IEEE Symposium on

Date of Conference:

23-26 Oct 1996