By Topic

Preference-Based Solution Selection Algorithm for Evolutionary Multiobjective Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jong-Hwan Kim ; Dept. of Electr. Eng., KAIST, Daejeon, South Korea ; Ji-Hyeong Han ; Ye-Hoon Kim ; Seung-Hwan Choi
more authors

Since multiobjective evolutionary algorithms (MOEAs) provide a set of nondominated solutions, decision making of selecting a preferred one out of them is required in real applications. However, there has been some research on MOEA in which the user's preferences are incorporated for this purpose. This paper proposes preference-based solution selection algorithm (PSSA) by which user can select a preferred one out of nondominated solutions obtained by any one of MOEAs. The PSSA, which is a kind of multiple criteria decision making (MCDM) algorithm, represents user's preference to multiple objectives or criteria as a degree of consideration by fuzzy measure and globally evaluates obtained solutions by fuzzy integral. The PSSA is also employed in each and every generation of evolutionary process to propose multiobjective quantum-inspired evolutionary algorithm with preference-based selection (MQEA-PS). To demonstrate the effectiveness of PSSA and MQEA-PS, computer simulations and real experiments on evolutionary multiobjective optimization for the fuzzy path planner of mobile robot are carried out. Computer simulation and experiment results show that the user's preference is properly reflected in the selected solution. Moreover, MQEA-PS shows improved performance for the DTLZ problems and fuzzy path planner optimization problem compared to MQEA with dominance-based selection and other MOEAs like NSGA-II and MOPBIL.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:16 ,  Issue: 1 )