Cart (Loading....) | Create Account
Close category search window
 

Toward Understanding EDAs Based on Bayesian Networks Through a Quantitative Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Echegoyen, C. ; Intell. Syst. Group, Univ. of the Basque Country, San Sebastián-Donostia, Spain ; Mendiburu, A. ; Santana, R. ; Lozano, J.A.

The successful application of estimation of distribution algorithms (EDAs) to solve different kinds of problems has reinforced their candidature as promising black-box optimization tools. However, their internal behavior is still not completely understood and therefore it is necessary to work in this direction in order to advance their development. This paper presents a methodology of analysis which provides new information about the behavior of EDAs by quantitatively analyzing the probabilistic models learned during the search. We particularly focus on calculating the probabilities of the optimal solutions, the most probable solution given by the model and the best individual of the population at each step of the algorithm. We carry out the analysis by optimizing functions of different nature such as Trap5, two variants of Ising spin glass and Max-SAT. By using different structures in the probabilistic models, we also analyze the impact of the structural model accuracy in the quantitative behavior of EDAs. In addition, the objective function values of our analyzed key solutions are contrasted with their probability values in order to study the connection between function and probabilistic models. The results not only show information about the internal behavior of EDAs, but also about the quality of the optimization process and setup of the parameters, the relationship between the probabilistic model and the fitness function, and even about the problem itself. Furthermore, the results allow us to discover common patterns of behavior in EDAs and propose new ideas in the development of this type of algorithms.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:16 ,  Issue: 2 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.