Cart (Loading....) | Create Account
Close category search window
 

Development of Bulk Optical Negative Index Fishnet Metamaterials: Achieving a Low-Loss and Broadband Response Through Coupling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Valentine, J. ; Nano-Scale Sci. & Eng. Center (NSEC), Univ. of California Berkeley, Berkeley, CA, USA ; Shuang Zhang ; Zentgraf, T. ; Xiang Zhang

In this paper, we discuss the development of a bulk negative refractive index metamaterial made of cascaded “fishnet” structures, with a negative index existing over a broad spectral range. We describe in detail the design of bulk metamaterials, their fabrication and characterization, as well as the mechanism of how coupling of the unit cells can reduce loss in the material through an optical transmission-line approach. Due to the lowered loss, the metamaterial is able to achieve the highest figure of merit to date for an optical negative index metamaterial (NIM) in the absence of gain media. The increased thickness of the metamaterial also allows a direct observation of negative refraction by illuminating a prism made of the material. Such an observation results in an unambiguous demonstration of negative phase evolution of the wave propagating inside the metamaterial. Furthermore, the metamaterial can be readily accessed from free space, making it functional for optical devices. As such, bulk optical metamaterials should open up new prospects for studies of the unique optical effects associated with negative and zero index materials such as the superlens, reversed Doppler effect, backward Cerenkov radiation, optical tunneling devices, compact resonators, and highly directional sources.

Published in:

Proceedings of the IEEE  (Volume:99 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.