System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Nonnegative Matrix Factorization with Earth Mover's Distance Metric for Image Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sandler, R. ; Yahoo! Res., Haifa, Haifa, Israel ; Lindenbaum, M.

Nonnegative matrix factorization (NMF) approximates a given data matrix as a product of two low-rank nonnegative matrices, usually by minimizing the L2 or the KL distance between the data matrix and the matrix product. This factorization was shown to be useful for several important computer vision applications. We propose here two new NMF algorithms that minimize the Earth mover's distance (EMD) error between the data and the matrix product. The algorithms (EMD NMF and bilateral EMD NMF) are iterative and based on linear programming methods. We prove their convergence, discuss their numerical difficulties, and propose efficient approximations. Naturally, the matrices obtained with EMD NMF are different from those obtained with L2-NMF. We discuss these differences in the context of two challenging computer vision tasks, texture classification and face recognition, perform actual NMF-based image segmentation for the first time, and demonstrate the advantages of the new methods with common benchmarks.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 8 )