Cart (Loading....) | Create Account
Close category search window

Cardinality Estimation for Large-Scale RFID Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen Qian ; Dept. of Comput. Sci., Univ. of Texas, Austin, TX, USA ; Hoilun Ngan ; Yunhao Liu ; Ni, L.M.

Counting the number of RFID tags (cardinality) is a fundamental problem for large-scale RFID systems. Not only does it satisfy some real application requirements, it also acts as an important aid for RFID identification. Due to the extremely long processing time, slotted ALOHA-based or tree-based arbitration protocols are often impractical for many applications, because tags are usually attached to moving objects and they may have left the readers interrogation region before being counted. Recently, estimation schemes have been proposed to count the approximate number of tags. Most of them, however, suffer from two scalability problems: time inefficiency and multiple-reading. Without resolving these problems, large-scale RFID systems cannot easily apply the estimation scheme as well as the corresponding identification. In this paper, we present the Lottery Frame (LoF) estimation scheme, which can achieve high accuracy, low latency, and scalability. LoF estimates the tag numbers by utilizing the collision information. We show the significant advantages, e.g., high accuracy, short processing time, and low overhead, of the proposed LoF scheme through analysis and simulations.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.