By Topic

Chemical Reaction Optimization for Task Scheduling in Grid Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jin Xu ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China ; Lam, A.Y.S. ; Li, V.O.K.

Grid computing solves high performance and high-throughput computing problems through sharing resources ranging from personal computers to supercomputers distributed around the world. One of the major problems is task scheduling, i.e., allocating tasks to resources. In addition to Makespan and Flowtime, we also take reliability of resources into account, and task scheduling is formulated as an optimization problem with three objectives. This is an NP-hard problem, and thus, metaheuristic approaches are employed to find the optimal solutions. In this paper, several versions of the Chemical Reaction Optimization (CRO) algorithm are proposed for the grid scheduling problem. CRO is a population-based metaheuristic inspired by the interactions between molecules in a chemical reaction. We compare these CRO methods with four other acknowledged metaheuristics on a wide range of instances. Simulation results show that the CRO methods generally perform better than existing methods and performance improvement is especially significant in large-scale applications.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 10 )