By Topic

Optimization of cooperative spectrum sensing and implementation on software defined radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bielefeld, D. ; Inst. for Theor. Inf. Technol., RWTH Aachen Univ., Aachen, Germany ; Fabeck, G. ; Zivkovic, M. ; Mathar, R.

Reliable detection of primary user activity by spectrum sensing is a crucial issue of cognitive radio systems. The objective of cooperative spectrum sensing is to combine the detection results of multiple cognitive radios in order to maximize the probability of detecting unused spectrum while meeting a required reliability of detecting primary user activity. In this paper, a Kullback-Leibler distance-based optimization approach for the local decision thresholds of cooperative spectrum sensing is proposed. It is both computationally efficient and scalable with the number of cognitive radios. To validate the concept, real spectrum sensing results are used. The employed practical setup is based on software defined radio and detects a WiMAX-like OFDM signal. The presented numerical results illustrate the feasibility and effectiveness of the approach.

Published in:

Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010 3rd International Symposium on

Date of Conference:

7-10 Nov. 2010