Cart (Loading....) | Create Account
Close category search window
 

Predicting feedback compliance in a teletreatment application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
op den Akker, H. ; Roessingh R&D, Enschede, Netherlands ; Jones, V. ; Hermens, H.

Health care provision is facing resourcing challenges which will further increase in the 21st century. Health care mediated by technology is widely seen as one important element in the struggle to maintain existing standards of care. Personal health monitoring and treatment systems with a high degree of autonomic operation will be required to support self-care. Such systems must provide many services and in most cases must incorporate feedback to patients to advise them how to manage the daily details of their treatment and lifestyle changes. As in many other areas of healthcare, patient compliance is however an issue. In this experiment we apply machine learning techniques to three corpora containing data from trials of body worn systems for activity monitoring and feedback. The overall objective is to investigate how to improve feedback compliance in patients using personal monitoring and treatment systems, by taking into account various contextual features associated with the feedback instances. In this article we describe our first machine learning experiments. The goal of the experiments is twofold: to determine a suitable classification algorithm and to find an optimal set of contextual features to improve the performance of the classifier. The optimal feature set was constructed using genetic algorithms. We report initial results which demonstrate the viability of this approach.

Published in:

Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010 3rd International Symposium on

Date of Conference:

7-10 Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.