By Topic

Channel characterization and diversity feasibility for in-body to on-body communication using low-band UWB signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jingjing Shi ; Grad. Sch. of Eng., Nagoya Inst. of Technol., Nagoya, Japan ; Jianqing Wang

This paper aims at the feasibility study of a wireless link for capsule endoscope by using of low-band ultra wideband (UWB) signals. The UWB technique has a potential to provide real-time image transmission from the inside to outside of the body, but it suffers from the large attenuation in the human tissue. We employ the finite difference time domain (FDTD) numerical technique together with an anatomical human body model to derive the channel characteristics such as the path loss and shadow fading. We also investigate the feasibility to use a space diversity technique to improve the communication performance. The results have shown a possibility to use the low-band UWB technique to realize a data rate as high as 80 Mbps for the capsule endoscope application.

Published in:

Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010 3rd International Symposium on

Date of Conference:

7-10 Nov. 2010