By Topic

A Reconstruction Approach to Scatterometer Wind Vector Field Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Williams, B.A. ; Jet Propulsion Lab., Pasadena, CA, USA ; Long, D.G.

This paper approaches wind field estimation from scatterometer measurements as the inversion of a noisy nonlinear sampling operation. The forward sampling model is presented and made discrete for practical purposes. Generally, the wind estimation problem is ill-posed at high resolution, which means that there are more parameters to estimate than measurements. A Bayesian approach based on maximum a posteriori (MAP) estimation is proposed to regularize the problem. This allows the simultaneous estimation of the regular samples of the high-resolution wind vector field directly from the noisy aperture-filtered backscatter σ° measurements. The MAP reconstruction approach is applied to the SeaWinds scatterometer, the examples are presented, and the results are compared to standard products. The MAP reconstruction method produces results that are consistent with standard products while preserving the higher spatial resolution information. The MAP estimates result in a similar resolution to the standard ultrahigh-resolution processing method but with a lower bias and a lower variability in the estimates.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 6 )