Cart (Loading....) | Create Account
Close category search window
 

Real-Time Suboptimal Model Predictive Control Using a Combination of Explicit MPC and Online Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zeilinger, M.N. ; Autom. Control Lab., ETH Zurich, Zürich, Switzerland ; Jones, C.N. ; Morari, M.

Limits on the storage space or the computation time restrict the applicability of model predictive controllers (MPC) in many real problems. Currently available methods either compute the optimal controller online or derive an explicit control law. In this paper we introduce a new approach combining the two paradigms of explicit and online MPC to overcome their individual limitations. The algorithm computes a piecewise affine approximation of the optimal solution that is used to warm-start an active set linear programming procedure. A preprocessing method is introduced that provides hard real-time execution, stability and performance guarantees for the proposed controller. By choosing a combination of the quality of the approximation and the number of online active set iterations the presented procedure offers a tradeoff between the warm-start and online computational effort. We show how the problem of identifying the optimal combination for a given set of requirements on online computation time, storage and performance can be solved. Finally, we demonstrate the potential of the proposed warm-start procedure on numerical examples.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.