By Topic

Pharmacokinetic/pharmacodynamic modelling of intracellular gemcitabine triphosphate accumulation: translating in vitro to in vivo

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Battaglia, M.A. ; Dept. of Chem. & Pet. Eng., Univ. of Pittsburgh, Pittsburgh, PA, USA ; Parker, R.S.

A detailed intracellular (IC) model describing the pharmacokinetics (PK) of gemcitabine (2',2'-difluoro-2'-deoxycytidine, dFdC) was developed and linked to a systemic plasma dFdC PK model. Based on in vivo PK, pharmacodynamic (PD) effect predictions were made using a simplified cell-cycle model (CCM). A reduced-order compartmental model describing the IC metabolism of dFdC was fit to in vitro data taken from the literature to estimate the kinetic parameters of gemcitabine triphosphate (dFdCTP) generation and elimination in leukaemia cells. For comparison with in vivo patient data, the proposed detailed IC model, coupled with the systemic PK model and the CCM PD model, was simulated; Monte Carlo randomisation of the parameter vector was used to simulate interpatient variability. This comparison of model-generated IC dFdCTP concentrations with literature values in peripheral blood mononuclear cells (PBMCs) revealed qualitative and quantitative agreement. A tumour interstitial compartment connecting the plasma and IC models allowed prediction of solid tumour dFdCTP concentration.

Published in:

Systems Biology, IET  (Volume:5 ,  Issue: 1 )