By Topic

A Machine Learning Based Spatio-Temporal Data Mining Approach for Detection of Harmful Algal Blooms in the Gulf of Mexico

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Balakrishna Gokaraju ; Geosystems Research Institute, Starkville ; Surya S. Durbha ; Roger L. King ; Nicolas H. Younan

Harmful algal blooms (HABs) pose an enormous threat to the U.S. marine habitation and economy in the coastal waters. Federal and state coastal administrators have been devising a state-of-the-art monitoring and forecasting system for these HAB events. The efficacy of a monitoring and forecasting system relies on the performance of HAB detection. We propose a machine learning based spatio-temporal data mining approach for the detection of HAB events in the region of the Gulf of Mexico. In this study, a spatio-temporal cubical neighborhood around the training sample is introduced to retrieve relevant spectral information of both HAB and non-HAB classes. The feature relevance is studied through mutual information criterion to understand the important features in classifying HABs from non-HABs. Kernel based support vector machine is used as a classifier in the detection of HABs. This approach gives a significant performance improvement by reducing the false alarm rate. Further, with the achieved classification accuracy, the seasonal variations and sequential occurrence of algal blooms are predicted from spatio-temporal datasets. New variability visualization is introduced to illustrate the dynamic behavior of HABs across space and time.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:4 ,  Issue: 3 )