By Topic

A Biologically Inspired Object Spectral-Texture Descriptor and Its Application to Vegetation Classification in Power-Line Corridors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhengrong Li ; Queensland Univ. of Technol., Brisbane, QLD, Australia ; Hayward, R. ; Walker, R. ; Yuee Liu

The use of appropriate features to represent an output class or object is critical for all classification problems. In this letter, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of images or objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSFs) of a pulse-coupled neural network, which is invariant to rotation, translation, and small scale changes. The proposed method is first evaluated in a rotation- and scale-invariant texture classification using the University of Southern California Signal and Image Processing Institute texture database. It is further evaluated in an application of vegetation species classification in power-line corridor monitoring using airborne multispectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective in representing the spectral-texture patterns of objects, and it shows better results than classic color histogram and texture features.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:8 ,  Issue: 4 )