By Topic

Radio Frequency Time-of-Flight Distance Measurement for Low-Cost Wireless Sensor Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Steven Lanzisera ; Lawrence Berkeley National Laboratory, Berkeley, CA, USA ; David Zats ; Kristofer S. J. Pister

Location-aware wireless sensor networks will enable a new class of applications, and accurate range estimation is critical for this task. Low-cost location determination capability is studied almost entirely using radio frequency received signal strength (RSS) measurements, resulting in poor accuracy. More accurate systems use wide bandwidths and/or complex time-synchronized infrastructure. Low-cost, accurate ranging has proven difficult because small timing errors result in large range errors. This paper addresses estimation of the distance between wireless nodes using a two-way ranging technique that approaches the Cramér-Rao Bound on ranging accuracy in white noise and achieves 1-3 m accuracy in real-world ranging and localization experiments. This work provides an alternative to inaccurate RSS and complex, wide-bandwidth methods. Measured results using a prototype wireless system confirm performance in the real world.

Published in:

IEEE Sensors Journal  (Volume:11 ,  Issue: 3 )