Cart (Loading....) | Create Account
Close category search window
 

Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuandong Ji ; Dept. of Syst. Eng., Case Western Reserve Univ., Cleveland, OH, USA ; Chizeck, H.J.

Consideration is given to the control of continuous-time linear systems that possess randomly jumping parameters which can be described by finite-state Markov processes. The relationship between appropriately defined controllability, stabilizability properties, and the solution of the infinite time jump linear quadratic (JLQ) optimal control problems is also examined. Although the solution of the continuous-time Markov JLQ problem with finite or infinite time horizons is known, only sufficient conditions for the existence of finite cost, constant, stabilizing controls for the infinite time problem appear in the literature. In this paper necessary and sufficient conditions are established. These conditions are based on new definitions of controllability, observability, stabilizability, and detectability that are appropriate for continuous-time Markovian jump linear systems. These definitions play the same role for the JLQ problem as the deterministic properties do for the linear quadratic regulator (LQR) problem

Published in:

Automatic Control, IEEE Transactions on  (Volume:35 ,  Issue: 7 )

Date of Publication:

Jul 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.