Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Morphological and optical characteristics of porous silicon structure formed by electrochemical etching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Astuti, B. ; Mater. Innovations & Nanoelectron. Res. Group, Univ. Teknol. Malaysia, Skudai, Malaysia ; Rusli, N.I. ; Hashim, A.M. ; Othaman, Z.
more authors

Porous silicon (PS) is defined as a composition of a silicon skeleton permeated by a network of pores or in other word, PS is a network of silicon nanowires and nanoholes which are formed when the crystalline silicon wafers are etched electrochemically in electrolyte solution such as hydrofluoric (HF) acid . PS shows different features in comparison to the bulk silicon such as shifting of fundamental absorption edge into the short wavelength and photoluminescence visible region. The PS material possesses interesting characteristics such as larger surface to volume ratio, high-intensity of nano porous structure and low refractive index. This paper presents the synthesis and characterization of electrochemically anodized PS structures. The effect of short anodization time on the PS structures is investigated. The PS surface morphology and optical properties are characterized using scanning electron microscopy (SEM) and photoluminescence (PL) spectrometer, respectively.

Published in:

Enabling Science and Nanotechnology (ESciNano), 2010 International Conference on

Date of Conference:

1-3 Dec. 2010