By Topic

Subband acoustic waveform front-end for robust speech recognition using support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yousafzai, J. ; Dept. of Electron. Eng., King''s Coll. London, London, UK ; Cvetkovic, Z. ; Sollich, P.

A subband acoustic waveform front-end for robust speech recognition using support vector machines (SVMs) is developed. The primary issues of kernel design for subband components of acoustic waveforms and combination of the individual subband classifiers using stacked generalization are addressed. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of classification in frequency subbands: the subband classifier outperforms the cepstral classifiers in the presence of noise for signal-to-noise ratio (SNR) below 12dB.

Published in:

Spoken Language Technology Workshop (SLT), 2010 IEEE

Date of Conference:

12-15 Dec. 2010