Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Detecting authority bids in online discussions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Marin, A. ; Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA ; Ostendorf, M. ; Zhang, B. ; Morgan, J.T.
more authors

This paper looks at the problem of detecting a particular type of social behavior in discussions: attempts to establish credibility as an authority on a particular topic. Using maximum entropy modeling, we explore questions related to feature extraction and turn vs. discussion-level modeling in experiments with online discussion text given only a small amount of labeled training data. We also introduce a method for learning interaction words from unlabeled data. Preliminary experiments show that a word-based approach (as used in topic classification) can be used successfully for turn-level modeling, but is less effective at the discussion level. We also find that sentence complexity features are almost as useful as lexical features, and that interaction words are more robust than the full vocabulary when combined with other features.

Published in:

Spoken Language Technology Workshop (SLT), 2010 IEEE

Date of Conference:

12-15 Dec. 2010