By Topic

Protein structural class prediction using support vector machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shafiullah, G.M. ; Dept. of Comput. Sci. & Inf. Technol., Islamic Univ. of Technol., Gazipur, Bangladesh ; Al-Mamun, H.A.

Protein structural class prediction can play a vital role in protein 3-D structure prediction by reducing the search space of 3-D structure prediction algorithms. In this paper we used support vector machine to predict protein structural class solely based of its amino acid sequences, i.e. mainly α, mainly β, α- β and fss from CATH protein structure database; all-α, all-β, α/β, α+β from SCOP protein structure database. Four different datasets were used in this paper among them two were constructed using a unique way called Representative Protein Extraction method. During the training phase for the binary classification 99.91% accuracy was achieved for fss vs. others. Also during the testing phase for SCOP database the overall prediction accuracy was 97.14% whereas for CATH database it was 96%. The results obtained in this study are quite encouraging, indicating that it can be used as a complimentary method for protein class prediction to many other existing methods.

Published in:

Electrical and Computer Engineering (ICECE), 2010 International Conference on

Date of Conference:

18-20 Dec. 2010