By Topic

Surface modification of a ferroelectric polymer insulator for low-voltage readable nonvolatile memory in an organic field-effect transistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kim, Won-Ho ; School of Electrical Engineering, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600, Republic of Korea ; Bae, Jin-Hyuk ; Kim, Min-Hoi ; Keum, Chang-Min
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We demonstrate that the sequential surface modification of a ferroelectric polymer insulator plays an essential role in both the enhancement of the carrier mobility and the shift in the turn-on voltage (Von) in an organic ferroelectric field-effect transistor (FeFET) for nonvolatile memory. The surface of a ferroelectric polymer insulator, poly(vinylidene fluoride-trifluoroethylene), is physicochemically modified by the successive treatments of ultraviolet-ozone (UVO) and CF4 plasma to understand how the surface morphology and the hydrophobicity affect the grain size, the mobility, and Von in the FeFET. In a pentacene-based FeFET, the CF4 plasma irradiation leads to the mobility enhancement by a factor of about 5 as well as the shift in Von toward a positive voltage direction while the UVO treatment results in only the shift in Von toward a negative voltage direction. It is found that the sequence of the two successive treatments is critical for tailoring interfacial interactions between the ferroelectric polymer insulator and the pentacene layer. The underlying mechanism for the mobility enhancement and the shift in Von is described in terms of the surface morphology and the nature of the built-in electric field.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 2 )