By Topic

Performance enhancement in limited feedback precoded spatial multiplexing MIMO-OFDM systems by using multi-block channel prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shichuan Ma ; Dept. of Comput. & Electron. Eng., Univ. of Nebraska - Lincoln, Omaha, NE, USA ; Duran-Herrmann, D. ; Yaoqing Yang ; Sharif, H.

Linear precoding plays an important role in the spatial multiplexing multiple-input multiple-output (MIMO)-orthogonal frequency-division multiplexing (OFDM) systems which are considered one of the primary candidates for the physical-layer techniques in the next-generation wireless communication systems. It requires the channel state information (CSI) at the transmitter to adapt the transmitted signal to the channel conditions. In most communication systems, the CSI is estimated at the receiver and fed back to the transmitter. However, the error performance in a precoded MIMO-OFDM system is significantly degraded due to the long feedback delay that causes the outdated CSI at the transmitter. In this paper, a novel approach using multi-block linear channel prediction is proposed to combat the feedback delay in a limited feedback precoded spatial multiplexing MIMO-OFDM system. The time-varying channel is modeled by autoregressive (AR) process, whose coefficients are obtained by linear minimum mean square error (MMSE) method. To increase prediction range, block-based channel samples are used to establish the AR model, and multiple blocks are employed to iteratively predict the CSI. Simulation results show that the performance degradation caused by large feedback delay can well be mitigated.

Published in:

GLOBECOM Workshops (GC Wkshps), 2010 IEEE

Date of Conference:

6-10 Dec. 2010