Cart (Loading....) | Create Account
Close category search window
 

Generalised spatial modulation with multiple active transmit antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jinlin Fu ; Sch. of Electron. & Inf. Eng., Tianjin Univ., Tianjin, China ; Chunping Hou ; Wei Xiang ; Lei Yan
more authors

We propose a new generalised spatial modulation (GSM) technique, which can be considered as a generalisation of the recently proposed spatial modulation (SM) technique. SM can be seen as a special case of GSM with only one active transmit antenna. In contrast to SM, GSM uses the indices of multiple transmit antennas to map information bits, and is thus able to achieve substantially increased spectral efficiency. Furthermore, selecting multiple active transmit antennas enables GSM to harvest significant transmit diversity gains in comparison to SM, because all the active antennas transmit the same information. On the other hand, inter-channel interference (ICI) is completely avoided by transmitting the same symbols through these active antennas. We present theoretical analysis using order statistics for the symbol error rate (SER) performance of GSM. The analytical results are in close agreement with our simulation results. The bit error rate performance of GSM and SM is simulated and compared, which demonstrates the superiority of GSM. Moreover, GSM systems with configurations of different transmit and receive antennas are studied. Our results suggest that using a less number of transmit antennas with a higher modulation order will lead to better BER performance.

Published in:

GLOBECOM Workshops (GC Wkshps), 2010 IEEE

Date of Conference:

6-10 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.