By Topic

Rebuilding for array codes in distributed storage systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhiying Wang ; Electrical Engineering Department, California Institute of Technology, Pasadena, CA 91125 ; Alexandros G. Dimakis ; Jehoshua Bruck

In distributed storage systems that use coding, the issue of minimizing the communication required to rebuild a storage node after a failure arises. We consider the problem of repairing an erased node in a distributed storage system that uses an EVENODD code. EVENODD codes are maximum distance separable (MDS) array codes that are used to protect against erasures, and only require XOR operations for encoding and decoding. We show that when there are two redundancy nodes, to rebuild one erased systematic node, only 3/4 of the information needs to be transmitted. Interestingly, in many cases, the required disk I/O is also minimized.

Published in:

2010 IEEE Globecom Workshops

Date of Conference:

6-10 Dec. 2010